The role of the linker between the SH2 domain and catalytic domain in the regulation and function of Src.
نویسندگان
چکیده
The crystal structures of the regulated Src and Hck tyrosine kinases show intramolecular interactions between the phosphorylated tail and the SH2 domain as well as between the SH3 domain, the SH2-catalytic domain linker (SH2-CD linker) and the catalytic domain. The relative contribution of these interactions to regulation of activity is poorly understood. Mutational analysis of Src and Lck revealed that interaction of the SH2-CD linker with the SH3 domain is crucial for regulation. Moreover, three sites of interaction of the linker with the catalytic domain, one at the beginning (Trp260) and two at the back of the small lobe, opposite the catalytic cleft (beta2/beta3 loop; alphaC/beta4 loop), impinge on Src activity. Other activating mutations map to the front of the catalytic domain in the loop preceding the alphaC-helix (beta3/alphaC loop). SH2-CD linker mutants are deregulated in mammalian cells but transform fibroblasts weakly, suggesting that the linker may bind cellular components. Interpretation of our results on the basis of the crystal structure of Src favours a model in which the correctly positioned SH2-CD linker exerts an inhibitory function on catalysis of Src family members by facilitating displacement of the alphaC-helix. This study may provide a template for the generation of deregulated versions of other protein kinases.
منابع مشابه
Intramolecular regulatory interactions in the Src family kinase Hck probed by mutagenesis of a conserved tryptophan residue.
Intramolecular interactions between the Src homology domains (SH2 and SH3) and the catalytic domains of Src family kinases result in repression of catalytic activity. The crystal structure of the Src family kinase Hck, with its regulatory domains intact, has been solved. It predicts that a conserved residue, Trp260, at the end of the linker between the SH2 and the catalytic domains plays an imp...
متن کاملSH2-Catalytic Domain Linker Heterogeneity Influences Allosteric Coupling across the SFK Family
Src-family kinases (SFKs) make up a family of nine homologous multidomain tyrosine kinases whose misregulation is responsible for human disease (cancer, diabetes, inflammation, etc.). Despite overall sequence homology and identical domain architecture, differences in SH3 and SH2 regulatory domain accessibility and ability to allosterically autoinhibit the ATP-binding site have been observed for...
متن کاملDifferential Sensitivity of Src-Family Kinases to Activation by SH3 Domain Displacement
Src-family kinases (SFKs) are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail...
متن کاملBinding, domain orientation, and dynamics of the Lck SH3-SH2 domain pair and comparison with other Src-family kinases.
The catalytic activity of Src-family kinases is regulated by association with its SH3 and SH2 domains. Activation requires displacement of intermolecular contacts by SH3/SH2 binding ligands resulting in dissociation of the SH3 and SH2 domains from the kinase domain. To understand the contribution of the SH3-SH2 domain pair to this regulatory process, the binding of peptides derived from physiol...
متن کاملAn intramolecular interaction between SH2-kinase linker and kinase domain is essential for the catalytic activity of protein-tyrosine kinase-6.
Protein-tyrosine kinase-6 (PTK6, also known as Brk) is a non-receptor tyrosine kinase that contains SH3, SH2, and catalytic (Kinase) domains. We have identified an intramolecular interaction between the linker (Linker) region connecting the SH2 and Kinase domains and the Kinase domain. Residue Trp-184 within the Linker region is essential for the Linker-Kinase interaction but not for the Linker...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 16 24 شماره
صفحات -
تاریخ انتشار 1997